THEORETICAL SCHEME FOR TRANSPORT PROPERTIES OF LENNARD-JONES FLUID MIXTURES

Tarun Kumar Dey

Post Graduate Department of Physics, L.S. College, B.R.A. Bihar University, Muzaffarpur-842001.

Abstract : Using Molecular dynamics to compute the transport properties of Lennard-Jones fluid mixtures using Green-Kubo formula. This formula is applied to estimate the transport properties (TP's) such as shear viscosity and thermal inductivity of Ar-Kr. The theory provides good result in low density regime where this experimental data and simulation is found very good.

Keywords : Lennard-Jones fluid mixture, Transport properties, Green-Kubo formula.

INTRODUCTION

In this present paper we concentrate on the transport properties of binary fluid mixtures at low density limit. One of the theoretical predictions based on Chapman - Enskog theory are available for comparison. In this present work we calculate the transport properties of Ar-Kr and Ar-CH₄ of Lennard-Jones fluid mixtures [1]. **Basic theory :** We consider a system of n_1 , particles of mass m_1 and n_2 particles of mass m_2 in a volume V. They interact through a Lennard-Jones (LJ) (12-6) potential.

$$U_{ab}(r) = 4 \in_{ab} \left[\left(\frac{\sigma_{ab}}{r} \right)^{12} - \left(\frac{\sigma_{ab}}{r} \right)^6 \right]$$
(1)

where a and b are the species. The cross-interactions is expressed by the generalized mixing rules.

$$\sigma_{12} = (\sigma_{11} + \sigma_{22})/2 \tag{2}$$

and

$$\epsilon_{12} = \epsilon_{11}^k \epsilon_{22}^{(1-k)} \tag{3}$$

where k is a constant which is used to assess the sensitivity of physical properties to the strength of the cross-section. In terms of reduced units of LJ fluids.

Reduced temp.

 $T^* = \frac{kT}{\epsilon_{11}}$

Number density

$$\rho^* = \frac{N\sigma_{11}^3}{N}$$

24

Transport Coefficients: In absence of external forces and chemical reactions the transport coefficients for binary mixture of species v = 1,2, can be derived from the microscopically defined fluxes of matter, J_v , and energy, J_o . Using the notation of MacGown and Evans [2, 3, 4].

$$J_{v} = N_{v} m_{v} (u_{v} - u) / V$$
(5)
$$u_{v} = \frac{1}{N_{v} m_{v}} \sum_{i}^{n_{v}} p_{i}$$
(6)

and

$$u = \sum_{i}^{n} \frac{p_{i}}{N_{1}m_{1}} + N_{2}m_{2}$$
(7)

where p_i is the particle momenta.

The heat flux employed in the transport coefficients thermal conductivity and soret (Dufour) coefficients, J_{Q} is defined as follows

$$J_{Q} = J_{Q}' - \sum_{v} J_{v} \left[\frac{h_{v}}{m_{v}} + \frac{1}{2} \left(\frac{J_{v}}{m_{v} \rho_{v}} \right)^{2} \right]$$
(8)

where h_v is the specific partial enthalpy or species v. The term h_v remains from the heat flux J_Q' .

Reduced time is in units or $\sigma_{11} \left(\frac{m_1}{\epsilon_{11}} \right)^{\frac{1}{2}}$, viscosity in $(m_1 \epsilon_{11})^{\frac{1}{2}} / \sigma_{11}^2$ and thermal conductivity in $k \left(\frac{m_1}{\epsilon_{11}} \right)^{-\frac{1}{2}} / \sigma_{11}^2$. The LJ (12 - 6) parameters are used in this work is represented in table 1[5].

Time correlation functions are interested numerically by simpson's rule to obtain the transport coefficients. The enthalpy flux contributions as located with the interdiffusion of the one species through the other.

$$J_{Q'} = \frac{1}{2V} \sum_{v} \sum_{i=1}^{N_{v}} \left[\left(\frac{p_{i}}{m_{v}} - u \right) m_{v} \left(\frac{p_{i}}{m_{v}} - u \right)^{2} + \sum_{j} \left(\frac{p_{i}}{m_{v}} - u \right) \left(\Phi_{ij} I - Q_{ij} F_{ij} \right) \right]$$
(9)

The momentum and position of particle *i* and q_i and p_i , respectively, a_{ij} F_{ij} is the dyad formed out of the two vectors. The species of *v*-dependent velocity (*v*) correlation function is

$$C_{\nu 0} = \frac{1}{3N_{\nu}} \sum_{i=1}^{N_{\nu}} \left(\frac{p_i(o)}{m_{\nu}} - u \right) \cdot \left(\frac{p_i(t)}{m_{\nu}} - u \right)$$
(10)

The shear viscosity of the mixture is given by the following Green-Kubo relationship.

$$\eta = \frac{V}{kT} \int_{0}^{\infty} \langle p_{\alpha\beta}^{(0)} p_{\alpha\beta}(t) \rangle dt$$
(11)

where $P_{\alpha\beta}$ is the $\alpha\beta(\alpha\neq\beta)$ component of the pressure tensor, P, which is

$$P_{\alpha\beta} = \frac{1}{V} \left(\sum_{\nu} \sum_{i=1}^{N_{\nu}} m_{\nu} \left[\frac{p_{\alpha i}}{m_{\nu}} - u_{\nu} \right] \left[\frac{p_{\beta i}}{m_{\nu}} - u_{\beta} \right] - \sum_{i=1}^{N-1} \sum_{j>i}^{N} \left(r_{\alpha i j} \frac{r_{\beta i j}}{r_{i j}} \right) \frac{d\phi(r_{i j})}{d_{r}}$$
(12)

where $r_{\alpha ij}$ is the α cartesian component of r_{ij} , Equation (12) is simplified in single component fluids

$$K = \frac{v}{k_b T^2} \int_0^\infty \langle J_{Q\alpha}(0) J_{Q\alpha}(t) \rangle dt$$
(13)

where $J_{Q\alpha}$ is the α component of heat flux, J_Q . We can calculate these components of *k* each determine by different time correlation function.

$$k = k_{q'Q'} + k_{Q'j} + k_{jj} \tag{14}$$

where

$$k_{q'Q'} = \frac{v}{k_B T^2} \int_0^{\infty} \langle J_{Q'\alpha}(0) J_{Q'\alpha}(t) \rangle dt$$

$$k_{q'j} = \frac{2(a-b)v}{k_B T^2} \int_0^{\infty} \langle J_{Q'\alpha}(0) J_{\alpha}(t) \rangle dt$$
(15)
$$k_{jj} = \frac{(a-b)^2 v}{k_B T^2} \int_0^{\infty} \langle J_{\alpha}(0) J_{\alpha}(t) \rangle dt$$
(17)

making use of $J_1 = -J_2$. This decomposition shows clearly how the terms $k_{Q'j}$ (16) and k_{jj} (17) will disappear as $\alpha \rightarrow \beta$. i.e. as a single component fluid is approached. Equation (17) only remains, being the m-species generalized expression for the single component fluid.

SHEAR VISCOSITY

The transport coefficients are presented in table 1 and compared with experimental data and kinetic theory (KT). The formula used are given as below :

The shear viscosity of the binary mixture is defined as η_{12} . In the single one - component fluid the shear viscosity as $\rho \rightarrow 0$ is

$$\eta_{11} = \frac{5}{16} \left(\frac{\left(m_1 k_B T / \pi \right)^{\frac{1}{2}}}{\sigma^2 \Omega^{(2,2)} (T_{11}^*)} \right)$$
(18)

If we define the quantity, η'_{12}

$$\eta'_{12} = \frac{5}{16} \left(\frac{\left[2\pi m_1 m_2 k_B T / (m_1 + m_2) \right]_{2}^{1/2}}{\pi \sigma_{12}^2 \Omega^{(2,2)} (T_{11}^*)} \right)$$
(19)

Then,

$$\eta'_{12} = \frac{(X_n + Y_n)}{(1 + Z_n)} \tag{20}$$

where

$$X_{n} = \frac{x_{1}^{2}}{\eta_{11}} + \frac{2x_{1}x_{2}}{\eta_{12}'} + \frac{x_{2}^{2}}{\eta_{22}}$$
(21)

If,

27

$$A(T_{12}^{*}) = \frac{\Omega^{(2,2)}(T_{12}^{*})}{\Omega^{(41)}(T_{12}^{*})}, \text{ then}$$

$$Y_{n} = \frac{3}{5}A(T_{12}^{*})\left(\frac{x_{1}^{2}m_{1}}{\eta_{11}m_{2}} + \frac{2x_{1}x_{2}(m_{1}+m_{2})^{2}(\eta_{12}^{1})^{2}}{4m_{1}m_{2}\eta_{12}^{'}\eta_{11}\eta_{22}} + \frac{x_{2}^{2}m_{2}}{\eta_{22}m_{1}}\right)$$

$$Z_{n} = \frac{3}{5}A(T_{12}^{*})\left\{\frac{x_{1}^{2}m_{1}}{m_{2}} + 2x_{1}x_{2}\frac{\left[(m_{1}+m_{2})^{2}\left(\frac{\eta_{12}^{2}}{\eta_{11}} + \frac{\eta_{12}^{2}}{\eta_{2}}\right) - 1\right]}{4m_{1}m_{2} + \frac{x_{2}^{2}m_{2}}{m_{1}}}\right\}$$
(22)

THERMAL CONDUCTIVITY

The one component fluid has thermal conductivity in the zero density in the zero density limit of the binary mixture is defined as k_{12} .

$$k_{11} = \frac{75}{64} \left(\frac{(m_1 k_B^3 T / \pi)^{\frac{1}{2}}}{\sigma^2 m_1 \Omega^{(2/2)} (T_{11}^*)} \right)$$
(23)
If we define the quantity, k_{12}^1 .

$$k_{12}^1 = \frac{75}{64} \left(\frac{k_B^3 T (m_1 + m_2) / (2\pi m_1 m_2)^{\frac{1}{2}}}{\sigma^2 \Omega^{(2/2)} (T_{12}^*)} \right)$$
(24)
Then,

$$k_{12}^{-1} = \frac{(X_k + Y_k)}{(1 + z_k)}$$
(25)
where,

$$X_k = \frac{x_1^2}{k_{11}} + \frac{2x_1 x_2}{k_{11}} + \frac{x_2^2}{k_{22}}$$
(26)

If

Then,

where,

$$B(T_{12}^{*}) = \frac{5\Omega^{(1,2)}(T_{12}^{*}) - 4\Omega^{(1,3)}(T_{12}^{*})}{\Omega^{(1,1)}(T_{12}^{*})}$$
(27)

then

$$Y_{k} = \frac{x_{1}^{2}U^{(1)}}{k_{11}} + \frac{2x_{1}x_{2}U^{(Y)}}{k_{11}'} + \frac{x_{2}^{2}U^{(2)}}{k_{22}}$$
(28)

$$Z_{k} = x_{1}^{2} U^{(1)} + 2x_{1} x_{2} U^{(Z)} + x_{2}^{2} U^{(2)}$$
⁽²⁹⁾

$$U^{(1)} = \frac{4}{15} A(T_{12}^*) - \frac{1}{2} \frac{\left[12B(T_{12}^*) + 1\right]m_1}{m_2} + \frac{1}{2} \frac{(m_1 - m_2)^2}{m_1 m_2}$$
(30)

$$U^{(2)} = \frac{4}{15} A(T_{12}^*) - \frac{1}{2} \frac{\left[12B(T_{12}^*)/5 + 1\right]m_2}{m_1} + \frac{1}{2} \frac{(m_1 - m_2)^2}{m_1 m_2}$$
(31)

$$U^{(y)} = \frac{4}{15} A\left(T_{12}^{*}\right) \left[\left(\frac{(m_{1} + m_{2})^{2}}{4m_{1}m_{2}}\right) \left(\frac{(k_{12}^{'})^{2}}{k_{11}k_{12}}\right) - \frac{1}{12} \left(\frac{12}{5} B\left(T_{12}^{*}\right)/5 + 1\right) \right] - \frac{5}{32A(T_{12}^{*})} \frac{\left(\frac{12}{5} B\left(T_{12}^{*}\right) - 5\right)(m_{1} - m_{2})^{2}}{m_{1}m_{2}}$$

$$U^{(Z)} = \frac{4}{15} A\left(T_{12}^{*}\right) \left[\left(\frac{(m_{1} + m_{2})^{2}}{4m_{1}m_{2}}\right) \left(\frac{k_{12}^{'}}{k_{11}} + \frac{k_{12}^{'}}{k_{12}} - 1\right) - \frac{1}{12} \left(\frac{12}{5} B\left(T_{12}^{*}\right) + 1\right) \right]$$

$$(32)$$

In the above expressions for the transport coefficients require a collision integral, which measures the temperature dependent collision cross-section [6, 8].

The collision integral consists of a series of three integrals, [6, 8, 9].

$$\Omega^{(l,s)}(T) = \frac{1}{\pi\sigma^2} \left[(s+1)! (k_B T)^{s+2} \right]^{-1} \int_0^s Q^{(i)}(E) \exp\left(-\frac{E}{k_B T}\right) E^{s+1} dE$$
(34)
gral over l,

an integral over l,

$$Q'(E) = 2\pi \left(1 - \frac{1}{2} \frac{(1 + (-1))^l}{l + 1}\right)^{-1} \int_0^x (1 - \cos^2\theta) \beta \delta \alpha.$$
(35)

where, β = Impact parameter

X =Scattering angle

$$E = \frac{1}{2}\mu v^2$$
 = kinetic energy

$$\mu = \frac{m_1 m_2}{m_1 + m_2} = \text{reduced mass}$$

v = Initial relative velocity between the particles.

Table 1. Molecular fluid parameters for the LJ molecules.

Molecule	m_1/u	$\in_{11/k}/k$	$\sigma_{_{11/nm}}$	m_1^*	\in_{11}^*	$\sigma^*_{\scriptscriptstyle 11}$
Ar ^a	39.95	119.8	0.3405	1	1	1
Kr ^a	83.90	167.0	0.3633	2.0976	1.340	1.06696
CH_4^a	16.04	152.0	0.374	0.4015	1.26874	1.09838

System	Т	Theory	Expt.	Simulation
Ar – Kr	1.81	0.210		0.22
	2.49	0.270	0.278	0.27
	8.347	0.595		0.63

Table 2. Shear viscosity η and k of equimolar binary mixture at $\rho \rightarrow 0$.

Table 3. Thermal conductivity **k** of equimolar binary mixtures at $\rho \rightarrow 0$.

System	Т	Theory	Expt.	Simulation
Ar – Kr	1.81	0.5295		0.63
	2.49	0.681		0.75
	8.347	1.492		1.92

CONCLUSIONS

The shear viscosity and thermal conductivity of Ar-Kr is estimated in table 2and 3 where the simulation and theoretical results are found good .The experimental value for shear viscosity is agreed with estimated value .

REFERENCES

- [1] Murad S, Sethi D.P.S. and Ravi, P.V., 1989 Fluid phase equilib., 53, 159, Murad S., 1989. A.I.Ch.
 E.J. 35, 311.
- [2] Macgowan D., and Evans D.J., 1986, Phys. Rev. A 34, 2133
- [3] Evans D.J. and Macgowan D. 1987, Phys. Rev. A., 36 948.
- [4] Paolini G.V. and Circotti. G, 1987, Phys. Rev. A, 35, 5156.
- [5] Mc Donald, I.R., 1972, Molec. Phys. 23, 41.
- [6] Rigby, M. Smith E.B., Wakeham W.A. and Maitland G.C. 1986. The forces between molecules (Clarendon press), pp. 41-45.
- [7] Barker, J.A., Fock W., and Smith F., 1964, Phys. Fluids. 7, 897.
- [8] Hirschdelder J.D., Curtiss C.F. and Bird R.B., 1954, Molecular theory of gases and liquids (John wiley)
- [9] Hunter I.N., Mathews, G.P. and Smith E.B. 1989, Molec. Phys, 66, 887.